Geographical and ecological outline of metal(loid) accumulating plants in Italian vascular flora
DOI:
https://doi.org/10.19040/ecocycles.v4i1.110Keywords:
Accumulating plants, Ellenberg indicator values, heavy metals, metal uptake, phytoextractors.Abstract
The decontamination of heavy metal polluted soils is one of the major challenges that our industrialized world has to face. Remediation technologies are being developed and employed in order to reduce the potential hazards of metal and metalloid contamination. Plants capable of uptaking metals and metalloids in their tissues can be an effective tool to remove such pollutants from contaminated soils. The use of this plant-driven process (Phytoremediation) requires the knowledge of the right phytoextractors to use when facing different types of contamination. The aim of this paper is to provide an inventory of phytoextractors that can be used in Phytoremediation procedures in Italy. The checklist includes 172 native or non-invasive alien accumulating and hyperaccumulating plants. An ecological outline of the accumulating flora was done by using the Ellenberg indicator values (EIVs). The high ecological plasticity of these species in different environmental conditions offers a wide spectrum of phytoextractors to choose from for any phytoremediation procedure.
Downloads
Metrics
References
DOI: 10.1007/s13762-015-0823-0
Alekseeva-Popova, N.V., Drozdova, I.V., Kalimova, I.B., 2015. Accumulation of heavy metals by North Caucasian plant species of the Cruciferae family in regards to phytoremediation. Geochem Int 53(5): 456-463.
DOI: 10.1134/S0016702915030027
Alford, É.R., Pilon-Smits, E.A., Paschke, M.W., 2010. Metallophytes—a view from the rhizosphere. Plant Soil 337(1-2): 33-50.
DOI: 10.1007/s11104-010-0482-3
Álvarez-López, V., Prieto-Fernández, Á, Cabello-Conejo, M.I., Kidd, P.S., 2016. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Total Environ 548: 370-379.
DOI: 10.1016/j.scitotenv.2015.12.147
Amer, N., Chami, Z.A., Bitar, L.A., Mondelli, D., Dumontet, S., 2013. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediat 15(5): 498-512.
DOI: 10.1080/15226514.2012.716102
Ampiah-Bonney, R.J., Tyson, J.F., Lanza, G.R., 2007. Phytoextraction of arsenic from soil by Leersia oryzoides. Int J Phytoremediat 9(1): 31-40.
DOI: 10.1080/15226510601139383
Anderson, C.W.N., Brooks, R.R., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H, Stewart, R.B., 1999. Phytomining for nickel, thallium and gold. J Geochem Explor 67(1-3): 407-415.
DOI: 10.1016/S0375-6742(99)00055-2
Angiosperm Phylogeny Group., 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2): 105-121.
Asztemborska, M., Steborowski, R., Kowalska, J., Bystrzejewska-Piotrowska, G., 2015. Accumulation of platinum nanoparticles by Sinapis alba and Lepidium sativum plants. Water Air Soil Pollut 226(4): 126.
DOI: 10.1007/s11270-015-2381-y
Baker, A.J.M., 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediat Contam Soil Water.
DOI: 10.3923/jest.2011.118.138
Baker, A.J.M., Brooks R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1(2): 81-126.
Barazani, O., Sathiyamoorthy, P., Manandhar, U., Vulkan, R., Golan-Goldhirsh, A., 2004. Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site. Chemosph 54(7): 867-872.
DOI: 10.1016/j.chemosphere.2003.10.005
Barbafieri, M., Dadea, C., Tassi, E., Bretzel, F., Fanfani, L., 2011. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremediat 13(10): 985-997.
DOI: 10.1080/15226514.2010.549858
Baroni, F., Boscagli, A., Protano, G., Riccobono, F., 2000. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 109(2): 347-352.
DOI: 10.1016/S0269-7491(99)00240-7
Baycu, G., Tolunay, D., Ozden H, Csatari I, Karadag, S., Agba, T., Rognes, S.E., 2015. An abandoned copper mining site in Cyprus and assessment of metal concentrations in plants and soil. Int J Phytoremediat 17(7): 622-631.
DOI: 10.1080/15226514.2014.922929
Bech, J., Roca, N., Tume, P., Ramos-Miras, J., Gil, C., Boluda, R., 2016. Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena 136: 66-73.
DOI: 10.1016/j.catena.2015.07.009
Bhargava, A., Shukla, S., Srivastava, J., Singh, N., Ohri, D., 2008. Chenopodium: a prospective plant for phytoextraction. Acta Physiol Plant, 30(1): 111-120.
DOI: 10.1007/s11738-007-0097-3
Bini, C., Maleci, L., Wahsha, M., 2017. Potentially toxic elements in serpentine soils and plants from Tuscany (Central Italy). A proxy for soil remediation. Catena 148: 60-66.
DOI: 10.1016/j.catena.2016.03.014
Bonanno, G., Giudice, R.L., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10(3): 639-645.
DOI: 10.1016/j.ecolind.2009.11.002
Bosiacki, M., Kleiber, T., Kaczmarek, J., 2013. Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates. Arch Environ Prot 39(3): 47-59.
DOI: 10.2478/aep-2013-0022
Boyd, R.S., 2009. High?nickel insects and nickel hyperaccumulator plants: A review. Insect Sci 16(1): 19-31.
DOI: 10.1111/j.1744-7917.2009.00250.x
Broadley, M.R., Willey, N.J., Wilkins, J.C., Baker, A.J., Mead, A., White, PJ., 2001. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytolog 152(1): 9-27.
DOI: 10.1046/j.0028-646x.2001.00238.x
Brooks R.R., Lee, J., Reeves, R.D Jaffre, T.,1 977a. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7: 49-77
DOI: 10.1016/0375-6742(77)90074-7
Brunetti, G., Farrag, K., Rovira, P.S., Nigro, F., Senesi, N., 2011. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 160(3): 517-523.
DOI: 10.1016/j.geoderma.2010.10.023
Burlo, F., Guijarro, I., Carbonell-Barrachina, A.A., Valero, D., Martinez-Sanchez, F., 1999. Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem, 47(3): 1247-1253.
DOI: 10.1021/jf9806560
Buscaroli, A., Zannoni, D., Menichetti, M., Dinelli, E., 2017. Assessment of metal accumulation capacity of Dittrichia viscosa (L.) Greuter in two different Italian mine areas for contaminated soils remediation. J Geochem Explor 182: 123-131.
DOI: 10.1016/j.gexplo.2016.10.001
Callahan, D.L., Roessner, U., Dumontet, V., De Livera A.M., Doronila, A., Baker, A.J., et al. 2012. Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochem 81: 80-89.
DOI: 10.1016/j.phytochem.2012.06.010
Cao, A., Carucci, A., Lai, T., Bacchetta, G., Casti, M., 2009. Use of native species and biodegradable chelating agents in the phytoremediation of abandoned mining areas. J Chem Technol Biotechnol 84(6): 884-889.
DOI: 10.1002/jctb.2179
Celesti-Grapow, L., Accogli R., 2010. Flora vascolare alloctona e invasiva delle regioni d'Italia. Università degli Studi di Roma La Sapienza.
Chang, P., Kim, K.W., Yoshida, S., Kim, SY., 2005. Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27(5-6): 529-538.
DOI: 10.1007/s10653-005-8013-5
Chen Y, Li, X., Shen Z., 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosph 57(3): 187-196.
DOI: 10.1016/j.chemosphere.2004.05.044
Concas, S., Lattanzi, P., Bacchetta, G., Barbafieri, M., Vacca A., 2015. Zn, Pb and Hg Contents of Pistacia lentiscus L. Grown on Heavy Metal-Rich Soils: Implications for Phytostabilization. Water Air Soil Pollut 226(10): 1-15.
DOI: 10.1007/s11270-015-2609-x
Conti, F., Bonacquisti, S., Scassellati, E., 2005. An annotated checklist of the Italian vascular flora. Palombi, Roma
Cutright, T., Gunda, N., Kurt, F., 2010. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediat 12(6): 562-573.
DOI: 10.1080/15226510903353146
De La Fuente, V., Rufo, L., Rodríguez, N., Amils, R., Zuluaga, J., 2010. Metal accumulation screening of the Río Tinto flora (Huelva, Spain). Biol Trace Elem Res 134(3): 318-341.
DOI: 10.1007/s12011-009-8471-1
Domina, G., Galasso, G., Bartolucci, F., Guarino, R., 2018. Ellenberg Indicator Values for the vascular flora alien to Italy. Flora Mediterranea 28(1): 53-61.
DOI: 10.7320/FlMedit28.053
Dudi?, B., Raki?, T., Šinžar-Sekuli? J., Atanackovi?, V., Stevanovi?, B., 2007. Differences of metal concentrations and morpho-anatomical adaptations between obligate and facultative serpentinophytes from Western Serbia. Arch Biol Sci 59(4): 341-349.
DOI: 10.2298/ABS0704341D
EEA 2011. Progress in management of contaminated sites. European Environment Agency. http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites-3/assessment
Ellenberg, H., 1992. Zeigerwerte von pflanzen in Mitteleuropa. Scripta geobot, 18, 1-258.
Erdemir Ü.S., Arslan H, Güleryüz, G., Güçer, ?., 2017. Elemental Composition of Plant Species from an Abandoned Tungsten Mining Area: Are They Useful for Biogeochemical Exploration and/or Phytoremediation Purposes? Bull Environ Contam Toxicol 98(3): 299-303.
DOI: 10.1007/s00128-016-1899-z
Escarré, J., Lefèbvre, C., Raboyeau, S., Dossantos, A., Gruber, W., Marel, J.C.C., Van Oort, F., 2011. Heavy metal concentration survey in soils and plants of the Les Malines mining district (Southern France): implications for soil restoration. Water Air Soil Pollut 216(1-4): 485-504.
DOI: 10.1007/s11270-010-0547-1
Fahr, M., Laplaze, L., El Mzibri, M., Doumas, P., Bendaou, N., Hocher, V., Smouni, A., 2015. Assessment of lead tolerance and accumulation in metallicolous and non-metallicolous populations of Hirschfeldia incana. Environ Exp Bot, 109: 186-192.
DOI: 10.1016/j.envexpbot.2014.07.010
Famulari, S., Witz K., 2015. A User-Friendly Phytoremediation Database: Creating the Searchable Database, the Users, and the Broader Implications. Int J Phytoremediat 17(8): 737-744.
DOI: 10.1080/15226514.2014.987369
Favas PJ., Pratas, J., Varun, M., D'Souza, R., Paul, M.S., 2014. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ, 470: 993-1002.
DOI: 10.1016/j.scitotenv.2013.10.067
Fellet, G., Marchiol, L., Perosa, D., Zerbi, G., 2007. The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol eng, 31(3): 207-214.
DOI: 10.1016/j.ecoleng.2007.06.011
Fellet, G., Poš?i?, F., Casolo, V., Marchiol, L., 2012. Metallophytes and thallium hyperaccumulation at the former Raibl lead/zinc mining site (Julian Alps, Italy). Plant Biosyst - An International Journal Dealing with all Aspects of Plant Biology, 146(4), 1023-1036.
DOI: 10.1080/11263504.2012.703250
Feng, R., Wang, X., Wei, C., Tu S., 2015. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediat 17(4): 348-354.
DOI: 10.1080/15226514.2013.773281
Fernández, R., Bertrand, A., Casares, A., García, R., González, A., Tamés, R.S., 2008. Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch. Envirom Pollut 152(3): 522-529.
DOI: 10.1016/j.envpol.2007.07.011
Fernández, R., Bertrand, A., García J.I., Tamés, R.S., González, A., 2012. Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environ Exp Bot: 78, 18-24.
DOI: 10.1016/j.envexpbot.2011.12.016
Fernández, S., Poschenrieder, C., Marcenò, C., Gallego J.R., Jiménez-Gámez, D., Bueno, A., Afif, E., 2017. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. J Geochem Explor, 174: 10-20.
DOI: 10.1016/j.gexplo.2016.05.015
Gardea-Torresdey J.L., De la Rosa, G., Peralta-Videa, J.R., Montes, M., Cruz-Jimenez, G., Cano-Aguilera, I., 2005. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48(2): 225-232. doi; 10.1007/s00244-003-0162-x
Gardea-Torresdey, J,L., Peralta-Videa, J.R., Montes, M., De la Rosa, G., Corral-Diaz, B., 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3): 229-235.
DOI: 10.1016/j.biortech.2003.10.002
Ghosh, M., Singh, S.P., 2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133(2): 365-371.
DOI: 10.1016/j.envpol.2004.05.015
Giacomino, A., Malandrino, M., Colombo ML., Miaglia, S., Maimone, P., Blancato, S., Abollino, O., 2016. Metal content in dandelion (Taraxacum officinale) leaves: influence of vehicular traffic and safety upon consumption as food. J Chem 2016.
DOI: 10.1155/2016/9842987
Gisbert, C., Clemente, R., Navarro-Avinó, J., Baixauli, C., Ginér, A., Serrano, R., Bernal, M.P., 2006. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56(1): 19-27.
DOI: 10.1016/j.envexpbot.2004.12.002
González, R.C., González-Chávez, M.C.A., 2006. Metal accumulation in wild plants surrounding mining wastes. Environ Pollut, 144(1): 84-92.
Gulz, P.A., Gupta, S.K., Schulin, R., 2005. Arsenic accumulation of common plants from contaminated soils. Plant Soil, 272(1-2): 337-347.
DOI: 10.1007/s11104-004-5960-z
Ha, N.T.H, Sakakibara, M., Sano, S., 2011. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol, 102(3): 2228-2234.
DOI: 10.1016/j.biortech.2010.10.014
Hajiani, N.J., Ghaderian, S.M., Karimi, N., Schat, H., 2015. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Environ Sci Pollut Res 22(21): 16542-16553.
DOI: 10.1007/s11356-015-4852-5
Hong, S.H, Choi, S.A., Yoon, H., Cho, K.S., 2011. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture. Environ Geochem Health, 33(1): 143-149.
DOI: 10.1007/s10653-010-9350-6
Hu, H., Jin, Q., Kavan, P., 2014. A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustain 6(9): 5820-5838.
DOI: 10.3390/su6095820
Huang, H., Yu, N., Wang, L., Gupta, D.K., He, Z., Wang, K., Yang, X.E., 2011. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102(23): 11034-11038.
DOI: 10.1016/j.biortech.2011.09.067
Huang J.W., Chen, J., Berti, W.R., Cunningham S.D., 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3): 800-805.
DOI: 10.1021/es9604828
Järup L., 2003. Hazards of heavy metal contamination. Br med bull 68(1): 167-182.
Jolly Y.N., Islam, A., Akbar, S., 2013. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus, 2(1): 385.
DOI: 10.1186/2193-1801-2-385
Karczewska, A., Lewi?ska, K., Ga?ka, B., 2013. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J Hazard Mater, 262: 1014-1021.
DOI: 10.1016/j.jhazmat.2012.09.008
Karimi, R., Chorom, M., Solhi, S., Solhi, M., 2012. Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. Afr J Agric Res 7(22): 3293-3301.
DOI: 10.5897/AJAR12.165
Keane, B., Collier, M.H, Shann, J.R., Rogsta, SH., 2001. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci Total Environ 281(1-3): 63-78.
DOI: 10.1016/S0048-9697(01)00836-1
Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., Zhu, Y.G., 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3): 686-692.
DOI: 10.1016/j.envpol.2007.06.056
Kitayev N.A., Zhukova R.I., 1980. Relationship between the concentrations of gold in soil, forest bedding and the bark of trees. Sov Geol Geophys 21(12): 118-121.
Kos, B., Greman, H., Lestan, D., 2003. Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ, 49(12): 548-553.
DOI: 10.17221/4192-PSE
Krämer, U., 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol 61: 517-534.
DOI: 10.1146/annurev-arplant-042809-112156
Küpper, H., Lombi, E., Zhao, F.J., McGrath, S.P., 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212(1): 75-84.
DOI: 10.1007/s004250000366
Lago-Vila, M., Arenas-Lago, D., Rodríguez-Seijo, A., Couce, M.A., Vega, F.A., 2015. Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid earth 6(1): 323.
Lin, L., Jin, Q., Liu, Y., Ning, B., Liao, M.A., Luo, L., 2014. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method. Environ Toxicol Chem, 33(11): 2422-2428.
DOI: 10.1002/etc.2694
Liu, J., Shang, W., Zhang, X., Zhu, Y., Yu, K., 2014. Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species. J Hazard Mater 267: 136-141.
DOI: 10.1016/j.jhazmat.2013.12.051
Liu, K., Yu, F., Chen, M., Zhou, Z., Chen, C., Li MS., Zh, J., 2016. A newly found manganese hyperaccumulator—Polygonum lapathifolium Linn. Int J Phytoremediat 18(4): 348-353.
DOI: 10.1080/15226514.2015.1109589
Liu, P., Tang, X., Gong, C., Xu, G., 2010. Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil, 335(1-2): 385-395.
DOI: 10.1007/s11104-010-0427-x
Lungwitz, E.E., 1900. The lixiviation of gold deposits by vegetation. Eng Min J 69: 500-502.
Luo, C.L., Shen, Z.G., Li, X.D., 2008. Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut 188(1-4): 127-137.
DOI: 10.1007/s11270-007-9529-3
Luo, C., Shen, Z., Li, X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosph 59(1): 1-11.
DOI: 10.1016/j.chemosphere.2004.09.100
Lutts, S., Lefevre I, Delpérée, C., Kivits, S., Dechamps, C., Robledo, A., Correal, E., 2004. Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual, 33(4): 1271-1279.
DOI: 10.2134/jeq2004.1271
Malagoli, M., Rossignolo, V., Salvalaggio, N., Schiavon, M., 2014. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils. Environ Sci Pollut Res 21(5): 3294-3303.
DOI: 10.1007/s11356-013-2307-4
Malayeri BE., Chehregani, A., Mohsenzadeh, F., Kazemeini, F., Asgari, M., 2013. Plants growing in a mining area: screening for metal accumulator plants possibly useful for bioremediation. Toxicol Environl Chem 95(3): 434-444.
DOI: 10.1080/02772248.2013.788701
Marcenò, C., Guarino R., 2015. A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis). Rend Lincei 26(3): 345-356.
DOI: 10.1007/s12210-015-0448-8
Marchiol, L., Fellet, G., Perosa, D., Zerbi G., 2007. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem, 45(5): 379-387.
DOI: 10.1016/j.plaphy.2007.03.018
Marchiol, L., Sacco, P., Assolari, S., Zerbi, G., 2004. Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158(1): 345-356.
Marques A.P., Moreira H, Rangel A.O., Castro P.M., 2009. Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. J Hazard Mater 165(1-3): 174-179.
DOI: 10.1016/j.jhazmat.2008.09.102
Martínez-Sánchez M.J., García-Lorenzo M.L., Pérez-Sirvent, C., Bech, J., 2012. Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123: 8-12.
DOI: 10.1016/j.gexplo.2012.01.007
Massa, N., Andreucci, F., Poli, M., Aceto, M., Barbato, R., Berta, G., 2010. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicol Environ Saf 73(8): 1988-1997.
DOI: 10.1016/j.ecoenv.2010.08.032
Melo, E.E.C., Costa, E.T.S., Guilherme, L.R.G., Faquin, V., Nascimento, C.W.A., 2009. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazardous Mater, 168(1): 479-483.
DOI: 10.1016/j.jhazmat.2009.02.048
Mihalík, J., Tlustoš, P., Szaková J., 2010. Comparison of willow and sunflower for uranium phytoextraction induced by citric acid. J Radioanal Nucl Chem 285(2): 279-285.
DOI: 10.1007/s10967-010-0538-0
Minguzzi, C., Vergnano, O., 1948. Il contenuto di nichel nelle ceneri di Alyssum bertolonii Desv. Mem Soc Tosc Sci Nat Ser A 55: 49-77.
Mkandawire, M., Dudel, E.G., 2005. Accumulation of arsenic in Lemna gibba L.(duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1-3): 81-89.
DOI: 10.1016/j.scitotenv.2004.06.002
Moreira H, Marques A.P., Rangel O., Castro, P.M., 2011. Heavy metal accumulation in plant species indigenous to a contaminated Portuguese site: prospects for phytoremediation. Water Air Soil Pollut 221(1-4): 377.
DOI: 10.1007/s11270-011-0797-6
Nan, H., Jifang, Z., Dexin, D., Guangyue, L., Jie Y., Xin, C., Jia, Y., 2013. Screening of native hyperaccumulators at the Huayuan River contaminated by heavy metals. Bioremediat J 17(1): 21-29.
DOI: 10.1080/10889868.2012.703260
Nematian MA., Kazemeini, F., 2013. Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area, Iran. Int J Agric Crop Sci 5(4): 426.
Ning, Z., He, L., Xiao, T., Márton, L., 2015. High accumulation and subcellular distribution of thallium in green cabbage (Brassica oleracea L. var. capitata L.). Int J Phytoremediat 17(11): 1097-1104.
DOI: 10.1080/15226514.2015.1045133
Pajuelo, E., Carrasco J.A., Romero, L.C., Chamber, M.A., Gotor, C., 2007. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O?Acetylserine (Thiol) Lyase under metal stress. Plant Biol 9(5): 672-681.
DOI: 10.1055/s-2007-965439
Panagos, P., Van Liedekerke, M., Yigini, Y., Montanarella, L., 2013. Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013.
DOI: 10.1155/2013/158764
Panich-Pat, T., Upatham, S., Pokethitiyook, P., Kruatrachue, M., Lanza, G.R., 2010. Phytoextraction of metal contaminants by Typha angustifolia: interaction of lead and cadmium in soil-water microcosms. J Environ Prot 1(04): 431.
DOI: 10.4236/jep.2010.14050
Parveen, T., Hussain, A., Rao M.S., 2015. Growth and accumulation of heavy metals in turnip (Brassica rapa) irrigated with different concentrations of treated municipal wastewater. Hydrol Res 46(1): 60-71.
DOI: 10.2166/nh.2014.140
Pathak, C., Chopra AK., Srivastava, S., 2013. Accumulation of heavy metals in Spinacia oleracea irrigated with paper mill effluent and sewage. Environ Monit Assess 185(9): 7343-7352.
DOI: 10.1007/s10661-013-3104-8
Peng, K., Luo, C., You, W., Lian, C., Li, X., Shen, Z., 2008. Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. Journal Hazard Mater 154(1-3): 674-681.
DOI: 10.1016/j.jhazmat.2007.10.080
Perry VR., Krogstad E.J., El-Mayas H, Greipsson, S., 2012. Chemically enhanced phytoextraction of lead-contaminated soils. Int J Phytoremediat 14(7): 703-713.
DOI: 10.1080/15226514.2011.619236
Pignatti, S., Menegoni, P., Pietrosanti S., 2005. Biondicazione attraverso le piante vascolari. Valori di indi- cazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. – Braun-Blanquetia 39: 1-97.
Poschenrieder, C., Llugany, M., Lombini, A., Dinelli, E., Bech, J., Barceló, J., 2012. Smilax aspera L. an evergreen Mediterranean climber for phytoremediation. J Geochem Explor 123: 41-44.
DOI: 10.1016/j.gexplo.2012.07.012
Purakayastha, T.J., Viswanath, T., Bhadraray, S., Chhonkar, P.K., Adhikari, P.P., Suribabu, K., 2008. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediat 10(1): 61-72.
DOI: 10.1080/15226510701827077
Radulescu, C., Stihi, C., Popescu IV., Dulama, I.D., Chelarescu, E.D., Chilian, A., 2013. Heavy metal accumulation and translocation in different parts of Brassica oleracea L. Rom J Phys 58(9-10): 1337.
Rajakaruna, N., Tompkins, K.M., Pavicevic, P.G., 2006. Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon J Sci, 35: 25-39.
Reeves, RD., Schwartz, C., Morel, J.L., Edmondson, J., 2001. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat: 3(2): 145-172.
DOI: 10.1080/15226510108500054
Reeves, R.D., Van Der Ent, A., Baker, A.J., 2018. Global Distribution and Ecology of Hyperaccumulator Plants. In Agromining: Farming for Metals (pp. 75-92). Springer, Cham
Roberts, T.M., Goodman, G.T., 1973. Persistence of heavy metals in soils and natural vegetation following closure of a smelter. In: Trace Subst Environ Healt (United States) 7(CONF-730613)
Roccotiello, E., Serrano, H.C., Mariotti, M.G., Branquinho, C., 2016. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant. Environ Sci Pollut Res 23(12): 12414-12422. doi 10.1007/s11356-016-6461-3
Rodríguez, N., Menéndez, N., Tornero, J., Amils, R., De La Fuente, V., 2005. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165(3): 781-789.
DOI: 10.1111/j.1469-8137.2004.01264.x
Saghi, A., Rashed Mohassel, M.H., Parsa, M., Hammami, H., 2016. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J phytoremediat, 18(4): 387-392.
DOI: 10.1080/15226514.2015.1109607
Salem, Z.B., Laffray, X., Al-Ashoor, A., Ayadi H, Aleya, L., 2017. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J Environl Sci, 54: 56-68.
DOI: 10.1016/j.jes.2015.10.039
Salt, D.E., Blaylock, M., Kumar, N.P., Dushenkov, V., Ensley, B.D., Chet, I., et al.1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol, 13(5): 468-474.
DOI: 10.1038/nbt0595-468
Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annu Rev Plant Biol, 49(1): 643-668.
DOI: 10.1146/annurev.arplant.49.1.643
Science Communication Unit, University of the West of England, Bristol. 2013. Science for environment policy In-depht Report: Soil Contamination: Impacts on Human Health. Report produced for the European Commission DG Environment, September 2013. Available at: http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf
Selvi, F., 2007. Diversity, geographic variation and conservation of the serpentine flora of Tuscany (Italy). Biodiver Conserv 16(5): 1423-1439. doi 10.1007/s10531-006-6931-x
Sharma R.K., Agrawal, M., Marshall, F., 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2): 258-266.
DOI: 10.1016/j.ecoenv.2005.11.007
Sheoran, V., Sheoran, A.S., Poonia, P., 2009. Phytomining: a review. Miner Eng 22(12): 1007-1019.
DOI: 10.1016/j.mineng.2009.04.001
Sipos, G., Solti Á, Czech, V., Vashegyi I, Tóth, B., Cseh, E., Fodor, F., 2013. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Plant Physiol Biochem 68: 96-103. doi 10.1016/j.plaphy.2013.04.006
Solhi, M., Shareatmadari, H., Hajabbasi, M.A., 2005. Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water Air Soil Pollut 167(1-4): 59-71.
Song, X., Hu, X., Ji, P., Li Y., Chi, G., Song, Y., 2012. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla. Bull Environ Contam Toxicol, 88(4): 623-626.
DOI: 10.1007/s00128-012-0524-z
Soriano, M.A., Fereres, E., 2003. Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil 256(2): 253-264.
Stojanovi?, M.D., Mihajlovi?, M.L., Milojkovi?, J.V., Lopi?i?, Z.R., Adamovi?, M., Stankovi?, S., 2012. Efficient phytoremediation of uranium mine tailings by tobacco. Environ Chem Lett 10(4): 377-381.
DOI: 10.1007/s10311-012-0362-6
Su, C., Jiang, L., Zhang, W., 2014. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ Skept Crit 3(2): 24.
Su, Y, Han, F.X., Chen, J., Sridhar, B.M., Monts, D.L., 2008. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytoremediat 10(6): 547-560.
DOI: 10.1080/15226510802115091
Sun, Y, Zhou, Q., Wang, L., Liu, W., 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161(2-3): 808-814.
DOI: 10.1016/j.jhazmat.2008.04.030
Szczyg?owska, M., Piekarska, A., Konieczka, P., Namie?nik, J., 2011. Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12(11): 7760-7771. doi 10.3390/ijms12117760
Tapia, Y, Cala, V., Eymar, E., Frutos I, Gárate, A., Masaguer, A., 2011. Phytoextraction of cadmium by four Mediterranean shrub species. Int J Phytoremediat 13(6): 567-579.
DOI: 10.1080/15226514.2010.495152
Taylor, S.I, Macnair, M.R., 2006. Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). New Phytol 169(3): 505-514. doi 10.1111/j.1469-8137.2005.01625.x
The Plant List – version 1. 2013. http://www.theplantlist.org. Accessed 10 Apr 2017. Raunkiaer C. 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford: Oxford University Press.
Tisarum, R., Lessl JT., Dong, X., De Oliveira, L.M., Rathinasabapathi, B., Ma, LQ., 2014. Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Environ Pollut 186: 110-114. doi : 10.1016/j.envpol.2013.11.033
Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L., 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88: 299-309.
DOI: 10.1016/j.envint.2015.12.017
Tu, C., Ma, L.Q., Bondada, B., 2002. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31(5): 1671-1675.
DOI: 10.2134/jeq2002.1671
Uraguchi, S., Watanabe, I, Yoshitomi, A., Kiyono, M., Kuno, K., 2006. Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57(12): 2955-2965.
DOI: 10.1093/jxb/erl056
Van?k, A., Komárek, M., Chrastný, V., Be?ka, D., Mihaljevi?, M., Šebek, O., Schusterová, Z., 2010. Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils—Agro-environmental implications. J Hazard Mater 182(1-3): 303-308.
DOI: 10.1016/j.jhazmat.2010.06.030
Vara Prasad, M.N., De Oliveira Freitas, H.M., 2003. Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3): 285-321.
DOI: 10.2225/vol6-issue3-fulltext-6
Wang, H.B., Wong, M.H, Lan CY, Baker, A.J.M., Qin, Y.R., Shu, W.S., Ye, Z.H., 2007. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145(1): 225-233.
DOI: 10.1016/j.envpol.2006.03.015 ·
Wang, S., Liu J., 2014. The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environ Monit Assess 186(2): 751-759.
DOI: 10.1007/s10661-013-3414-x
Warren, H.V., Delavault, R.E.,1950. Gold and silver content of some trees and horsetails in British Columbia. Geol Soc Am Bull, 61(2): 123-128.
DOI: 10.1130/0016-7606(1950)61[123:GASCOS]2.0.CO;2
Wei, S., Zhou, Q., Wang, X., Zhang, K., Guo, G., Ma, LQ., 2005. A newly-discovered Cd-hyperaccumulator Solatium nigrum L. Chin Sci Bull 50(1): 33-38.
DOI: 10.1360/982004-292
Wenzel, W.W., Jockwer, F., 1999. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104(1): 145-155.
DOI: 10.1016/s0269-7491(98)00139-0
Wilson, B., Pyatt, F.B., 2007. Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol Environ Saf 66(2): 224-231.
DOI: 10.1016/j.ecoenv.2006.02.015
Yabe, J., Ishizuka, M., Umemura, T., 2010. Current levels of heavy metal pollution in Africa. J Vet Med Sci 72(10): 1257-1263.
Yaman, M., 2014. Teucrium as a Novel Discovered Hyperaccumulator for the Phytoextraction of Ni-contaminated Soils. Ekol Derg 23(90).
DOI: 10.5053/ekoloji.2014.9010
Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., Schvartz, C., 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31(5): 755-762.
DOI: 10.1016/j.envint.2005.02.004
Yu, L., Xin, G., Gang, W., Zhang, Q., Qiong, S., Guoju, X., 2008. Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China. J Environ Sci 20(5): 607-612.
DOI: 10.1016/S1001-0742(08)62101-4
Zhai, S., Xiao H, Shu Y, Zhao, Z., 2013. Countermeasures of heavy metal pollution. Chin J Geochem 32(4): 446-450.
DOI: 10.1007/s11631-013-0654-y
Zhu Y.G., Williams P.N., Meharg, A.A., 2008. Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154(2): 169-171.
DOI: 10.1016/j.envpol.2008.03.015
Zhuang, P., Wensheng, S.H.U., Zhian L.I., Bin, L., Jintian, L.I., Jingsong, S., 2009. Removal of metals by sorghum plants from contaminated land. J Environ Sci 21(10): 1432-1437.
DOI: 10.1016/S1001-0742(08)62436-5
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The original submitted version of the manuscript (the version that has not undergone peer review) may be posted at any time. Authors should disclose details of preprint posting, including DOI, upon submission of the manuscript to ECOCYCLES.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. LICENCE: Creative Commons Attribution 4.0 International (CC BY 4.0)